光纖是一種將訊息從一端傳送到另一端的媒介.是一條玻璃或塑膠纖維,作為讓訊息通過的傳輸媒介。
通?!腹饫w」與「光纜」兩個名詞會被混淆.多數(shù)光纖在使用前必須由幾層保護結構包覆,包覆后的纜線即被稱為「光纜」.光纖外層的保護結構可防止周遭環(huán)境對光纖的傷害,如水,火,電擊等.光纜分為:光纖,緩沖層及披覆.光纖和同軸電纜相似,只是沒有網狀屏蔽層。中心是光傳播的玻璃芯。在多模光纖中,芯的直徑是15mm~50mm, 大致與人的頭發(fā)的粗細相當。而單模光纖芯的直徑為8mm~10mm。芯外面包圍著一層折射率比芯低的玻璃封套, 以使光纖保持在芯內。再外面的是一層薄的塑料外套,用來保護封套。光纖通常被扎成束,外面有外殼保護。 纖芯通常是由石英玻璃制成的橫截面積很小的雙層同心圓柱體,它質地脆,易斷裂,因此需要外加一保護層。
由於光纖是一種傳輸媒介,它可以像一般銅纜線,傳送電話通話或電腦數(shù)據等資料,所不同的是,光纖傳送的是光訊號而非電訊號.因此,光纖具有很多獨特的優(yōu)點.
如:寬頻寬.低損耗.屏蔽電磁輻射.重量輕.安全性.隱密性.
你可能知道任何通訊傳輸?shù)倪^程包括:編碼→傳輸→解碼,當然,光纖系統(tǒng)的傳輸過程也大致相同.電子訊號輸入后,透過傳輸器將訊號數(shù)位編碼,成為光訊號,光線透過光纖為媒介,傳送到另一端的接受器,接受器再將訊號解碼,還原成原先的電子訊號輸出.
光纜的應用區(qū)分,可分為3種:專業(yè)用途,一般屋外,一般屋內.在專業(yè)用途上包括海底光纜,高壓電塔上之空架光纜,核能電廠之抗輻射光纜,化工業(yè)之抗腐蝕光纜等.而一般屋內及一般屋外的分類差異,依各型光纜依制造設計時之特質,其所適用之范圍各有不同.
光纜從屋外至屋內的過程中可分為空架,地下道,直接埋設,管道間鋪設,室內用。
1880-AlexandraGrahamBell發(fā)明光束通話傳輸
1960-電射及光纖之發(fā)明
1977-首次實際安裝電話光纖網路
1978-FORT在法國首次安裝其生產之光纖電
1990-區(qū)域網路及其他短距離傳輸應用之光纖
2000-到屋邊光纖=>到桌邊光纖
光纖主要分以下兩大類:
1)傳輸點模數(shù)類
傳輸點模數(shù)類分單模光纖(Single Mode Fiber)和多模光纖(Multi Mode Fiber)。單模光纖的纖芯直徑很小, 在給定的工作波長上只能以單一模式傳輸,傳輸頻帶寬,傳輸容量大。多模光纖是在給定的工作波長上,能以多個模式同時傳輸?shù)墓饫w。 與單模光纖相比,多模光纖的傳輸性能較差。
ITU對光纖給出的標準:
G.651是多模光纖。
G.652是常規(guī)單模光纖,零色散點在1300nm,現(xiàn)在分G. 652A、B、C、D幾種,主要的區(qū)別在于PMD。G. 652光纖的特點是當工作波長在1300nm時,光纖色散很小,系統(tǒng)的傳輸距離只受損耗限制。
G. 653是色散位移光纖(DSF),主要特點是1550nm為零色散點,造成這個原因是通過波導色散進行色散平移的結果。使低損耗與零色散在同一工作波長上。但是零色散不利于多信道WDM傳輸,因為當復用的信道數(shù)較多時,信道間距較小,這時就會產生一種稱為四波混頻(FWM)的非線性光學效應,這種效應使兩個或三個傳輸波長混合,產生新的、有害的頻率分量,導致信道間發(fā)生串擾。如果光纖線路的色散為零,F(xiàn)WM的干擾就會十分嚴重;哪果有微量色散,F(xiàn)WM干擾反而有還會減小,針對這一現(xiàn)像,科學家們研制了一種新型光纖,NZ-DSF。
G. 654光纖是超低損耗光纖,主要用于跨洋光纜,常見的纖芯是純的SiO2,而普通的光纖纖芯要摻鍺。在1550nm附近的損耗最小,僅為0.185dB/km,但在此區(qū)域色散比較大,約17~20 ps/〔nm*km〕,但在1300nm波長區(qū)域色散為零。
G. 655光纖是非零色散位移光纖(NZ-DSF),分655A、B、C,主要特點是1550nm的色散接近零,但不是零。是一種改進的色散位移光纖,以抑制四波混頻。
G. 656光纖是未來導向光纖,G656的工作波長明顯增大,包括S,C和L波段(1460到1625nm)。
G.652單模光纖
滿足ITU-T.G.652要求的單模光纖,常稱為非色散位移光纖,其零色散位于1.3um窗口低損耗區(qū),工作波長為1310nm(損耗為0.36dB/km)。我國已敷設的光纖光纜絕大多數(shù)
單模光纖和多模光纖
是這類光纖。隨著光纖光纜工業(yè)和半導體激光技術的成功推進,光纖線路的工作波長可轉移到更低損耗(0.22dB/km)的1550nm光纖窗口。
滿足ITU-T.G.653要求的單模光纖,常稱色散位移光纖(DSF=Dispersion Shifled Fiber),其零色散波長移位到損耗極低的1550nm處。這種光纖在有些國家,特別在日本被推廣使用,我國京九干線上也有所采納。美國AT&T早期發(fā)現(xiàn)DSF的嚴重不足,在1550nm附近低色散區(qū)存在有害的四波混頻等光纖非線性效應,阻礙光纖放大器在1550nm窗口的應用。但在日本,將色散補償技術*用于G.653單模光纖線路,仍可解決問題,而且未見有日本的G.655光纖,似屬個謎。
滿足ITU-T.G.655要求的單模光纖,常稱非零色散位移光纖或NZDSF(=NonZero Dispersion Shifted Fiber)。屬于色散位移光纖,不過在1550nm處色散不是零值(按ITU-T.G.655規(guī)定,在波長1530-1565nm范圍對應的色散值為0.1-6.0ps/nm*km),用以平衡四波混頻等非線性效應。商品光纖有如AT&T的TrueWave光纖,Corning的SMF-LS光纖(其零色散波長典型值為1567.5nm,零色散典型值為0.07ps/nm2*
km)以及Corning的LEAF光纖。我國的"大寶實"光纖等。
2)折射率分布類
折射率分布類光纖可分為跳變式光纖和漸變式光纖。跳變式光纖纖芯的折射率和保護層的折射率都是一個常數(shù)。 在纖芯和保護層的交界面,折射率呈階梯型變化。漸變式光纖纖芯的折射率隨著半徑的增加按一定規(guī)律減小, 在纖芯與保護層交界處減小為保護層的折射率。纖芯的折射率的變化近似于拋物線。
1310nm波長的光在G.652光纖上傳輸時,決定其傳輸距離限制的是衰減因數(shù);因為在1310nm波長下,光纖的材料色散與結構色散相互抵消總的色散為0,在1310nm波長上有微小振幅的光信號能夠實現(xiàn)寬頻帶傳輸。
1550nm波長的光在G.652光纖上傳輸時衰減因數(shù)很小,單純從衰減因數(shù)考慮,1550nm波長的光在相同的光功率下傳輸?shù)木嚯x大于1310nm波長的光下的傳輸?shù)木嚯x,但是實際情況并非如此,單模光纖帶寬B與色散因數(shù)D的關系為:B=132.5/(Dl*D*L)GHz
其中L為光纖的長度,Dl為譜線寬度,對于1550nm波長的光,其色散因數(shù)為20ps/(nm.km),假設其光譜寬度等于1nm,傳輸距離為L=50公里,則有:B=132.5/(D*L)GHz=132.5MHz
1、衰耗系數(shù)a:其規(guī)定與物理含義與多模光纖完全相同,在此不多敘述。
2、色散系數(shù)D(λ):我們已經知道,光纖的色散可以分為三大部分即模式色散、材料色散與波導色散。而對于單模光纖而言,由于實現(xiàn)了單模傳輸所以不存在模式色散的問題,故其色散主要表現(xiàn)為材料色散與波導色散(統(tǒng)稱模內色散)。綜合考慮單模光纖的材料色散與波導色散,統(tǒng)稱色散系數(shù)。色散系數(shù)可以這樣理解:每公里的光纖由于單位譜寬所引起的脈沖展寬值。因此,L公里光纖由色散引起的脈沖展寬值為:σ=δλ•D(λ)•L(2.17)其中:δλ為光源譜寬σ為根均方展寬值色散系數(shù)越小越好。光纖的色散系數(shù)越小,就意味著其帶寬系數(shù)越大即傳輸容量越大。例如CCITT建議在波長1.31微米處單模光纖的色散系數(shù)應小于3.5ps/km.nm。經過計算,其帶寬系數(shù)在25000MHz•km以上,是多模光纖的60多倍(多模光纖的帶寬系數(shù)一般在1000MHz•km以下)。
3、模場直徑d:模場直徑表征單模光纖集中光能量的程度。由于單模光纖中只有基模在進行傳輸,因此粗略地講,模場直徑就是在單模光纖的接收端面上基模光斑的直徑(實際上基模光斑并沒有明顯的邊界)。可以極其粗略地認為(很不嚴格的說法),模場直徑d和單模光纖的纖芯直徑相近。
4、截止波長λc:我們知道,當光纖的歸一化頻率V小于其歸一化截止頻率Vc時,才能實現(xiàn)單模傳輸,即在光纖中僅有基模在傳輸,其余的高次模全部截止。也就是說,除了光纖的參量如纖芯半徑,數(shù)值孔徑必須滿足一定條件外,要實現(xiàn)單模傳輸還必須使光波波長大于某個數(shù)值,即λ≥λc,這個數(shù)值就叫做單模光纖的截止波長。因此,截止波長λc的含義是,能使光纖實現(xiàn)單模傳輸?shù)淖钚」ぷ鞴獠úㄩL。也就是說,盡管其它條件皆滿足,但如果光波波長不大于單模光纖的截止波長,仍不可能實現(xiàn)單模傳輸。
5、回損---Return Loss:反射損耗又稱為回波損耗,它是指出光端,后向反射光相對輸入光的比率的分貝數(shù),回波損耗愈大愈好,以減少反射光對光源和系統(tǒng)的影響。
FC 圓型帶螺紋(配線架上用的最多)
ST 卡接式圓型
SC 卡接式方型(路由器交換機上用的最多)
PC 微球面研磨拋光
APC 呈8度角并做微球面研磨拋光
MT-RJ 方型,一頭雙纖收發(fā)一體( 華為8850上有用)
光纖模塊:一般都支持熱插拔,
GBIC Giga Bitrate Interface Converter, 使用的光纖接口多為SC或ST型
SFP 小型封裝GBIC,使用的光纖為LC型
使用的光纖:
單模: L ,波長1310 單模長距LH 波長1310,1550
多模:SM 波長850
SX/LH表示可以使用單?;蚨嗄9饫w
l 在表示尾纖接頭的標注中,我們常能見到“FC/PC”,“SC/PC”等,其含義如下
l “/”前面部分表示尾纖的連接器型號
“SC”接頭是標準方型接頭,采用工程塑料,具有耐高溫,不容易氧化優(yōu)點。傳輸設備側光接口一般用SC接頭
“LC”接頭與SC接頭形狀相似,較SC接頭小一些。
“FC”接頭是金屬接頭,一般在ODF側采用,金屬接頭的可插拔次數(shù)比塑料要多。
l 連接器的品種信號較多,除了上面介紹的三種外,還有MTRJ、ST、MU等。
l /”后面表明光纖接頭截面工藝,即研磨方式。
“PC”在電信運營商的設備中應用得最為廣泛,其接頭截面是平的。,PC 是Physical Connection 的縮寫,表明其對接端面是物理接觸,即端面呈凸面拱型結構,APC和PC類似,但采用了特殊的研磨方式,PC是球面,APC是斜8度球面
“UPC”的衰耗比“PC”要小,一般用于有特殊需求的設備,一些國外廠家ODF架內部跳纖用的就是FC/UPC,主要是為提高ODF設備自身的指標。
u 另外,在廣電和早期的CATV中應用較多的是“APC”型號,其尾纖頭采用了帶傾角的端面,可以改善電視信號的質量,主要原因是電視信號是模擬光調制,當接頭耦合面是垂直的時候,反射光沿原路徑返回。由于光纖折射率分布的不均勻會再度返回耦合面,此時雖然能量很小但由于模擬信號是無法徹底消除噪聲的,所以相當于在原來的清晰信號上疊加了一個帶時延的微弱信號,表現(xiàn)在畫面上就是重影。尾纖頭帶傾角可使反射光不沿原路徑返回。一般數(shù)字信號一般不存在此問題